
Mécanique des fluides
Section de génie civil

TD 2 - Correction

Exercices
Exercice 1 Retrouver la dimension de la viscosité dynamique µ puis celle
de la viscosité cinématique ν = µ/ϱ, où ϱ est la masse volumique du fluide.
Soit V une vitesse et l une longueur, identifier les combinaisons adimen-
sionnelles parmi les suivantes : νlV , lV /ν, νV 2 et V /(νl).

Exercice 2 L’écoulement de Poiseuille est un écoulement laminaire d’un
liquide visqueux dans une conduite cylindrique rectiligne. Le débit total à
travers une telle conduite s’exprime comme

Q =
πR4∆p

8µl
(1)

où R est le rayon de la conduite, ∆p la chute de pression le long de la
conduite, µ la viscosité dynamique du fluide et l la longueur de la conduite.
Déterminer la dimension de la constante π/8. Peut-on qualifier cette équa-
tion d’homogène ? Expliquer.

Figure 1 – Profil de vitesse d’un écoulement de Poiseuille
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Exercice 3 Une formule pour estimer le débit Q au-dessus du trop-plein
d’un barrage est :

Q = C
√

2gB(H +V 2/2g)3/2 (2)

où C est une constante, g l’accélération de la gravité, B la largeur du trop-
plein, H la profondeur de l’eau au-dessus du trop-plein, et V la vitesse de
l’eau juste à l’amont du barrage. Cette équation est-elle valide dans n’im-
porte quel système d’unités ? Expliquer.

Exercice 4 Le but de cet exercice est de calculer une vitesse de sédimenta-
tion. On se place dans de l’air de masse volumique ϱf et nous considérons
la chute d’une sphère de rayon R = 5 cm et de masse volumique ϱs. Faire
un bilan des forces qui s’exercent sur la sphère et calculer sa vitesse limite.
La force de traînée est donnée par l’équation suivante :

FD =
1
2
CDϱf Sv

2 (3)

où CD est le coefficient de traînée qui peut être estimé par l’abaque de
la figure suivante (CD en fonction du nombre de Reynolds), S la surface
projetée de la sphère (πR2), et v sa vitesse. On supposera le nombre de
Reynolds très grand. Une fois la vitesse limite calculée, vérifier cette der-
nière hypothèse. Nous utiliserons les données suivantes : ϱf = 1,2 kg/m3,
µf = 2× 10−5 Pa · s et ϱs = 1000 kg/m3.

Figure 2 – variation de CD en fonction du nombre de Reynolds.

Exercice 5 Lors de l’explosion d’une bombe nucléaire, une onde de choc
de forme hémisphérique se propage dans l’air suite au relâchement initial
d’énergie. Comme l’étude complète de ce problème est compliquée (équa-
tions différentielles non linéaires, écoulement compressible, thermodyna-
mique), on se propose d’estimer l’évolution dans le temps du rayon de cette
onde de choc par une analyse dimensionnelle. Pour ce faire on va suppo-
ser que ce rayon R ne dépend que de la quantité d’énergie libérée E au
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moment de l’explosion, de la masse volumique ϱ du milieu dans lequel a
lieu l’explosion et du temps t écoulé depuis l’instant initial. On va utiliser
deux approches différentes pour y arriver, une approche « intuitive » en-
tièrement basée sur l’analyse dimensionnelle et une approche basée sur le
théorème de Buckingham–Π.

Figure 3 – Essai Trinity dans le cadre du projet Manhattan à t = 0,025 s le
16 juillet 1945 au Nouveau-Mexique.

1. On suppose que le rayon de l’onde de choc est proportionnel à l’éner-
gie libérée, à la masse volumique du fluide où se propage l’onde ainsi
qu’au temps écoulé ; c’est-à-dire R ∼ Eaϱbtc. Trouver les valeur des
coefficients a, b et c tels que cet équation soit homogène du point de
vue dimensionnel.

2. En utilisant le théorème de Buckingham–Π, déterminer le nombre
adimensionnel qui caractérise ce problème. En déduire la relation
qui lie le rayon R de l’onde de choc aux autres variables du problème.

3. Estimer l’énergie relâchée lors de l’explosion de l’essai nucléaire Tri-
nity sachant qu’après 0,05 s le rayon de l’onde de choc mesure 180 m.

Exercice 6 Un modèle réduit de digue à l’échelle 1/20 est constituée d’un
empilement de blocs en béton de masse 1 kg. Cette digue est censée pro-
téger un port contre la houle. On a observé qu’il n’y avait aucun dommage
tant que la hauteur H de la houle ne dépassait pas 30 cm sur le modèle ré-
duit. Quel doit être le poids minimal des blocs en béton pour que la digue
résiste à une houle géométriquement et dynamiquement similaire à celle
du modèle réduit sachant que la houle peut atteindre 6 m de haut?
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Indications : Supposer que le soulèvement d’un corps exposé aux vagues inter-
vient lorsque Fp/Fa = ε avec Fp le poids du corps, Fa la force d’arrachement due à
l’eau et ε une constante indépendante de l’échelle. En première approximation
on considérera que Fa est proportionnelle à la surface apparente du corps et au
carré de la vitesse de l’eau (Fa ∝U2L2 avec U la vitesse de l’eau et L la longueur
caractéristique du corps). Égaliser ensuite les nombres de Froude.

mer

digue

H

Figure 4 – Digue de protection contre la houle.

Exercice 7 Vous êtes chargés d’étudier en laboratoire la chute de pression
par unité de longueur dans un tuyau de section circulaire.

1. Identifier les paramètres qui contrôlent cet écoulement. Sans utiliser
le théorème Buckingham–Π, quel plan d’expérience envisageriez-
vous pour réaliser cette expérience?

2. Utiliser maintenant le théorème Buckingham–Π pour connaître les
nombres sans dimensions sur lesquelles se construit le phénomène
physique. Quel plan d’expérience peut-on maintenant envisager ?

3. Ci-dessous (Figure 5) est tracé le diagramme de Moody, célèbre in-
génieur américain qui a tracé à partir d’expériences l’évolution du
coefficient de frottement de Darcy-Weissbach défini par :

f =
2d
ρU2

dP
dx

en fonction de Re pour un tube cylindrique de diamètre d.
Sur la base de ce que vous avez déterminé avec le théorème Buckingham–
Π, expliquer l’intérêt de ce graphique ? Voit-on un degré de liberté
supplémentaire ? Indiquer le nombre d’expériences nécessaires pour
décrire le phénomène pour Re ≫ 105 et avec une rugosité de ϵ

D =
0.03
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Figure 5 – Diagramme de Moody

Corrections

Exercice 1
— [µ] = ML−1T −1 ;
— [ν] = L2T −1 ;
— [νlV ] = L4T −2 ;
— [lV /ν] = [−] ;
— [νV 2] = L4T −3 ;
— [V /(νl)] = L−2.

Exercice 2
— [Q] = L3T −1, débit ;
— [R] = L, rayon ;
— [∆p] = ML−1T −2, chute de pression ;
— [µ] = ML−1T −1, viscosité ;
— [l] = L, longueur ;
— [π/8] = [−], rapport adimensionnel.

Cette équation est donc homogène.

Exercice 3 Le débit volumique Q s’exprime en L3T −1.
√

2g s’exprime en
L1/2T −1, B en L et (H+V 2/(2g))3/2 en L3/2. Le produit des trois composantes
s’exprime donc en L3T −1. Afin que l’équation soit homogène la constante
C doit être sans unités. L’équation est donc valable dans n’importe quel
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système d’unités.

Exercice 4 Les forces qui s’exercent sur la sphère sont son poids, la force
de traînée (frottement de l’air) et la poussée d’Archimède. La poussée d’Ar-
chimède est ici négligeable et peut être simplifiée dans le bilan des forces.
Lorsque la vitesse limite est atteinte, la somme des forces qui s’exercent sur
la sphère est nulle, c’est-à-dire que le poids est contrebalancé par la force
de traîné. On en déduit donc la vitesse limite

mg = FD ⇒ vl =

√
ϱs

4
3πR

3g
1
2CDϱf πR2

=

√
8
3
R
ϱs
ϱf

g

CD
.

Pour Re ≫ 1, CD vaut environ 0,5 ce qui nous donne vl ≈ 46,7 m/s. On
injecte cette valeur de la vitesse limite dans la formule du nombre de Rey-
nolds

Re =
ϱuL

µ

avec L = R m, u = vl m/s, ϱf = 1,2 kg/m3 et µ = 2× 10−5 Pa·s

⇒ Re ≈ 1,4× 105≫ 1

Exercice 5

1. Étant donné que l’on suppose R ∼ Eaϱbtc, on peut écrire l’équation
aux dimensions suivante (dans le système d’unités MLT )

[L] = [ML2T −2]a[ML−3]b[T ]c,

L1 = Ma+bL2a−3bT c,

ce qui implique le système d’équation suivant

a+ b = 0

2a− 3b = 1

c − 2a = 0.

Ce système comporte trois équations et trois inconnues, il est donc
solvable. La résolution donne a = 1/5, b = −1/5 et c = 2/5 ce qui
donne la relation suivante pour R

R ∼ E1/5ϱ−1/5t2/5.
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Cette relation signifie que R est du même ordre que le produit des
autres variables, cependant cette relation n’est pas exacte. Il pourrait
y avoir une constante C sans dimensions telle que

R = C ×E1/5ϱ−1/5t2/5,

mais à ce stade de l’analyse et avec les outils dont nous disposons
nous somme dans l’impossibilité de le savoir.

2. On va cette fois utiliser le théorème de Buckingham–Π. Ce problème
fait intervenir quatre variable, R, E, ϱ et t pour trois unités fonda-
mentales, M, L et T . On peut donc construire 4− 3 = 1 variable adi-
mensionnelle, que l’on notera Π1. L’équation aux dimensions s’écrit
donc comme

Π1 = [R]a[E]b[ϱ]c[t]d ,

[−] = LaMbL2bT −2bMcL−3c T d

ce qui donne le système d’équations suivant

b+ c = 0

a+ 2b − 3c = 0

d − 2b = 0.

Ce système comporte trois équations et quatre inconnues, on peut
donc en déterminer trois avec une variable libre. Étant donné que
l’on veut trouver une relation pour R nous allons choisir a = 1. On
retrouve un système de trois équations à trois inconnues, comme
pour la question précédente. On obtient donc b = −1/5, c = 1/5 et d =
−2/5 et Π1 = RE−1/5ϱ1/5t−2/5. D’après le théorème de Buckingham–
Π on peut donc écrire la relation

Φ(Π1) = 0,

ce qui veut dire que le nombre adimensionnel Π est constant puisque
c’est le seul argument d’un fonction constante. On peut donc écrire

RE−1/5ϱ1/5t−2/5 = C⇔ R = C ×E1/5ϱ−1/5t2/5

qui est la relation que nous avions trouvé à la question précédente,
avec la précision de la constante C. Dans la question précédente,
nous étions arrivé à la conclusion que R était de l’ordre du produit
des autres variables. Ici, le théorème de Buckingham–Π nous a per-
mis de prouver que C était bien une constante. L’expérience permet-
tra de déterminer sa valeur.

3. On ne peut pas répondre car l’équation fait intervenir le produit
C ×E1/5, et on ne peut donc déterminer que ce produit avec l’infor-
mation disponible.
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4. En prenant t = 0,05 s, ϱ = 1,25 kg/m3 et R = 180 m, nous obtenons

E =
ϱR5

t2 = 9,45 · 1013 J,

ce qui correspond à 22,5 kilotonnes (équivalent TNT). La vraie va-
leur de l’essaie Trinity était de 18,6 kilotonnes , nous sommes dans
le bon ordre de grandeur.

Exercice 6 Dans cet exercice nous considérons un modèle réduit de digue
faite de blocs de béton de masse 1 kg. Elle est construite à l’échelle 1/20 par
rapport à la réalité. Cette digue est censée protéger contre la houle jusqu’à
une hauteur de 30 cm dans le modèle réduit, hauteur à partir de laquelle
les blocs de béton sont arrachés. On connait l’expression de la condition
de soulèvement des blocs de béton, Fp/Fa = ε, on on veut appliquer cette
condition à la digue réelle. Notons avec un indice m les variable du modèle
réduit et avec un indice r les variables correspondant à la réalité. Nous
avons donc les conditions d’arrachement qui s’écrivent

Fp,m
Fa,m

=
Fp,r
Fa,r

= ε,

⇒
mmg

U2
mL

2
m

=
mrg

U2
r L

2
r
,

mr = mm
L2
r

L2
m

U2
r

U2
m
.

Étant donné que l’échelle géométrique est e = 1/20, nous avons que L2
r /L

2
m =

1/e2. Égalisons maintenant les nombres de Froude, cela donne

Frm = Frr ⇒
Um√
gHm

=
Ur√
gHr

⇒ Um

Ur
=

√
Hm

Hr
.

Or comme le rapport Hr /Hm doit respecter l’échelle géométrique (simi-
litude géométrique), nous avons donc que U2

r /U
2
m = 1/e et donc finale-

ment

mr = mm
L2
r

L2
m

U2
r

U2
m

=
mm

e3 = mm × 8000 = 8000 kg
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Exercice 7 Dans cet exercice nous nous intéressons à la chute de pression
(ou gradient de pression) dP / dx le long d’une conduite circulaire. Le but
étant de déterminer le nombre d’expériences nécessaires pour déterminer
cette chute de pression.

1. Les différentes variables qui contrôlent cet écoulement sont la masse
volumique ϱ de l’eau exprimée en ML−3, la viscosité dynamique µ
de l’eau exprimée en ML−1T −1, le rayon R de la conduite exprimé en
L, la vitesse U de l’écoulement exprimé en LT −1 et la chute de pres-
sion par unité de longueur dP / dx de l’eau exprimée en ML−2T −2

dans un système d’unités MLT . On pourrait imaginer de faire une
expérience où l’on fait varier le débit à travers une conduite (ce qui
équivaut à faire varier la vitesse) et ou l’on mesure la chute de pres-
sion correspondant à cette variation de vitesse.

2. Étant donné que l’on a cinq variables pour trois dimensions, il y a
donc 5−3 = 2 nombres adimensionnels qui caractérisent cet écoule-
ment. Ils s’écrivent donc de la forme

Πi = ϱaµbRcV d(dP / dx)e i = 1,2.

On peut donc écrire l’équation aux dimensions suivante

[−] = [ML−3]a[ML−1T −1]b[L]c[LT −1]d[ML−2T −2]e,

[−] = Ma+b+eL−3a−b+c+d−2eT −b−d−2e.

De cette équation aux dimensions on tire les système d’équations
linéaires suivant

a+ b+ e = 0

−3a− b+ c+ d − 2e = 0

−b − d − 2e = 0.

Il y a cinq variables pour trois équations, on peut donc choisir li-
brement deux paramètres parmi les cinq (a, b, c, d ou e). Néanmoins
comme on cherche avant toute chose le gradient de pression en fonc-
tion des autres paramètre posons e = 1 et b = 0 (ce dernier choix est
arbitraire on décide de s’affranchir la viscosité dans ce nombre adi-
mensionnel).
La résolution du système d’équations donne donc a = −1, c = 1 et
d = −2. Le nombre adimensionnel correspondant est

Π1 =
dP
dx

R

ϱU2 .
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Dans un deuxième temps on fixe b = 1 et e = 0. La résolution du
système d’équations donne donc a = −1, c = −1 et d = −1. Le nombre
adimensionnel correspondant est

Π2 =
µ

ϱUR
=

1
Re

.

On peut sans perte de généralité décider que Π2 = Re et non Π2 =
1/Re.
Le théorème de Buckingham–Π affirme que la loi recherchée est
sous la forme

Φ(Re,Π1) = 0,

ce qui veut que par le théorème des fonctions implicites on peut
écrire

Π1 = f (Re).

On peut donc maintenant envisager une seule expérience où l’on
ferait varier le nombre de Reynolds et ou l’on mesurerai la chute de
pression par unité de longueur correspondante.

3. La combinaison du théorème de Buckingham–Π et du théorème des
fonctions implicites nous a permis d’affirmer que (dP / dx)R/(ϱU2) =
f (Re). Or c’est exactement la signification du diagramme de Moody,
si l’on remarque que le coefficient de frottement de Darcy-Weissbach
f est équivalent à Π1 à un facteur 4 près. Ce diagramme est présenté
sur la figure 6.
L’analyse du diagramme de Moody permet de mettre en évidence
une variable cachée, à savoir la rugosité (axe vertical sur la droite
du diagramme). On peut voir que pour une conduite donnée (ayant
sa propre rugosité) et pour un nombre de Reynolds suffisamment
élevé, le coefficient f est constant (la chute de pression est constante).
Donc si l’on se donne pour objectif de déterminer f pour une conduite
de rugosité ε/D = 0,03 à un nombre de Reynolds Re > 105, on peut
voir sur le diagramme que pour cette rugosité f devient constant
à partir de Re ≈ 1,1104. Il ne nous faudra donc qu’une seule expé-
rience pour déterminer f , soit notre chute de pression.
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Figure 6 – Diagramme de Moody
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