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Mécanique des fluides

Section de génie civil
TD 2 - Correction

Exercices

Exercice 1 Retrouver la dimension de la viscosité dynamique y puis celle
de la viscosité cinématique v = p/p, ou p est la masse volumique du fluide.
Soit V une vitesse et I une longueur, identifier les combinaisons adimen-
sionnelles parmi les suivantes : vIV, [V/v, vV % et V/(v]).

Exercice 2 L'écoulement de Poiseuille est un écoulement laminaire d’un
liquide visqueux dans une conduite cylindrique rectiligne. Le débit total a
travers une telle conduite s’exprime comme
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ou R est le rayon de la conduite, Ap la chute de pression le long de la
conduite, p la viscosité dynamique du fluide et / la longueur de la conduite.
Déterminer la dimension de la constante 7t/8. Peut-on qualifier cette équa-
tion d’homogene ? Expliquer.

Figure 1 - Profil de vitesse d’un écoulement de Poiseuille



Exercice 3 Une formule pour estimer le débit Q au-dessus du trop-plein
d’un barrage est :

Q = C\2gB(H + V?/2¢)*? (2)
ou C est une constante, g l'accélération de la gravité, B la largeur du trop-
plein, H la profondeur de I’eau au-dessus du trop-plein, et V la vitesse de
I’eau juste a I'amont du barrage. Cette équation est-elle valide dans n'im-
porte quel systeme d’unités ? Expliquer.

Exercice 4 Le but de cet exercice est de calculer une vitesse de sédimenta-
tion. On se place dans de 'air de masse volumique py et nous considérons
la chute d’une sphére de rayon R = 5 cm et de masse volumique p,. Faire
un bilan des forces qui s’exercent sur la sphere et calculer sa vitesse limite.
La force de trainée est donnée par I’équation suivante :

PD: %CDpfS'l/z (3)

ou Cp est le coefficient de trainée qui peut étre estimé par 'abaque de
la figure suivante (Cp en fonction du nombre de Reynolds), S la surface
projetée de la sphére (R?), et v sa vitesse. On supposera le nombre de
Reynolds tres grand. Une fois la vitesse limite calculée, vérifier cette der-
niere hypothese. Nous utiliserons les données suivantes : py = 1,2 kg/m3,
pif=2x107>Pa-set o, = 1000 kg/m”>.
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Ficure 2 - variation de Cp en fonction du nombre de Reynolds.

Exercice 5 Lors de 'explosion d’'une bombe nucléaire, une onde de choc
de forme hémisphérique se propage dans l’air suite au relachement initial
d’énergie. Comme 1’étude complete de ce probleme est compliquée (équa-
tions différentielles non linéaires, écoulement compressible, thermodyna-
mique), on se propose d’estimer 1’évolution dans le temps du rayon de cette
onde de choc par une analyse dimensionnelle. Pour ce faire on va suppo-
ser que ce rayon R ne dépend que de la quantité d’énergie libérée E au



moment de I’explosion, de la masse volumique p du milieu dans lequel a
lieu l’explosion et du temps t écoulé depuis l'instant initial. On va utiliser
deux approches différentes pour y arriver, une approche « intuitive » en-
tierement basée sur I’analyse dimensionnelle et une approche basée sur le
théoreme de Buckingham-IT.
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Ficure 3 — Essai Trinity dans le cadre du projet Manhattan a t = 0,025 s le
16 juillet 1945 au Nouveau-Mexique.

1. On suppose que le rayon de 'onde de choc est proportionnel a I’éner-
gie libérée, a la masse volumique du fluide ou se propage I'onde ainsi
qu’au temps écoulé; c’est-a-dire R ~ E%p?t¢. Trouver les valeur des
coefficients a, b et c tels que cet équation soit homogene du point de
vue dimensionnel.

2. En utilisant le théoreme de Buckingham-II, déterminer le nombre
adimensionnel qui caractérise ce probleme. En déduire la relation
qui lie le rayon R de I'onde de choc aux autres variables du probléeme.

3. Estimer I’énergie relachée lors de I’explosion de l’essai nucléaire Tri-
nity sachant qu’apres 0,05 s le rayon de 'onde de choc mesure 180 m.

Exercice 6 Un modele réduit de digue a I’échelle 1/20 est constituée d’un
empilement de blocs en béton de masse 1 kg. Cette digue est censée pro-
téger un port contre la houle. On a observé qu’il n’y avait aucun dommage
tant que la hauteur H de la houle ne dépassait pas 30 cm sur le modele ré-
duit. Quel doit étre le poids minimal des blocs en béton pour que la digue
résiste a une houle géométriquement et dynamiquement similaire a celle
du modele réduit sachant que la houle peut atteindre 6 m de haut?



Indications : Supposer que le soulévement d’un corps exposé aux vagues inter-
vient lorsque F,/F, = € avec F, le poids du corps, F, la force d’arrachement due a
leau et € une constante indépendante de I’échelle. En premiére approximation
on considérera que F, est proportionnelle a la surface apparente du corps et au
carré de la vitesse de l'eau (F, o UZ2L? avec U la vitesse de Ueau et L la longueur
caractéristique du corps). Egaliser ensuite les nombres de Froude.
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Figure 4 — Digue de protection contre la houle.

Exercice 7 Vous étes chargés d’étudier en laboratoire la chute de pression
par unité de longueur dans un tuyau de section circulaire.

1. Identifier les parametres qui controlent cet écoulement. Sans utiliser
le théoreme Buckingham-II, quel plan d’expérience envisageriez-
vous pour réaliser cette expérience?

2. Utiliser maintenant le théoréme Buckingham-IT pour connaitre les
nombres sans dimensions sur lesquelles se construit le phénomene
physique. Quel plan d’expérience peut-on maintenant envisager?

3. Ci-dessous (Figure 5) est tracé le diagramme de Moody, célebre in-
génieur américain qui a tracé a partir d’expériences I’évolution du
coefficient de frottement de Darcy-Weissbach défini par :

;2 dp
~ pU2dx

en fonction de Re pour un tube cylindrique de diametre d.

Sur la base de ce que vous avez déterminé avec le théoreme Buckingham-
I1, expliquer I'intérét de ce graphique? Voit-on un degré de liberté
supplémentaire ? Indiquer le nombre d’expériences nécessaires pour
décrire le phénomeéne pour Re > 10° et avec une rugosité de § =

0.03



Moody Diagram
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FIGUre 5 — Diagramme de Moody
.
Corrections

Exercice 1
— [u]=ML'T™;
— [v]=L%T;
— [vIV]=L4T2;
— [IV/v]=1[-];
— vV =L4T3;
— [V/(vD)]=L2.

Exercice 2

— [Q]=L3T, débit;

— [R] =L, rayon;

— [Ap] = ML™'T72, chute de pression;

— [p]=ML7IT7!, viscosité;

— [I]=L, longueur;

— [n/8] =[], rapport adimensionnel.
Cette équation est donc homogene.

Exercice 3 Le débit volumique Q s’exprime en L3T~!. 1/2g s’exprime en
LY2T1,Ben Let (H+V?/(2g))¥? en L*2. Le produit des trois composantes
s’exprime donc en L3T~!. Afin que I’équation soit homogéne la constante
C doit étre sans unités. L’équation est donc valable dans n’importe quel



systeme d’unités.

Exercice 4 Les forces qui s’exercent sur la sphere sont son poids, la force
de trainée (frottement de l’air) et la poussée d’Archimede. La poussée d’Ar-
chimede est ici négligeable et peut étre simplifiée dans le bilan des forces.
Lorsque la vitesse limite est atteinte, la somme des forces qui s’exercent sur
la sphére est nulle, c’est-a-dire que le poids est contrebalancé par la force
de trainé. On en déduit donc la vitesse limite

4 3
0s3TR°g 8 0s &
mg=Fp=v=|———— =,[zR——=.
V %CDprch \/ 3 0rCp

Pour Re > 1, Cp vaut environ 0,5 ce qui nous donne v; ~ 46,7 m/s. On
injecte cette valeur de la vitesse limite dans la formule du nombre de Rey-
nolds
_pul

I

avec L=Rm, u=v;m/s, pf =1,2kg/m> et y=2x10"> Pa-s

Re

=S Re~1,4x10°>1

Exercice 5

1. Etant donné que I'on suppose R ~ E%pPt%, on peut écrire I’équation

aux dimensions suivante (dans le systéme d’unités MLT)
[L] = [ML*T 21" [MLZP[T],
Ll — Ma+bL2u—3ch

ce qui implique le systeme d’équation suivant

a+b=0
2a-3b=1
c—2a=0.

Ce systéeme comporte trois équations et trois inconnues, il est donc
solvable. La résolution donne a = 1/5, b = —-1/5 et ¢ = 2/5 ce qui
donne la relation suivante pour R

R~ EV5,71/5,2/5,



Cette relation signifie que R est du méme ordre que le produit des
autres variables, cependant cette relation n’est pas exacte. Il pourrait
y avoir une constante C sans dimensions telle que

R = CxE1/59_1/5t2/5,

mais a ce stade de l'analyse et avec les outils dont nous disposons
nous somme dans I'impossibilité de le savoir.

. On va cette fois utiliser le théoréeme de Buckingham-ITI. Ce probleme
fait intervenir quatre variable, R, E, p et t pour trois unités fonda-
mentales, M, L et T. On peut donc construire 4 — 3 = 1 variable adi-
mensionnelle, que I'on notera I'T;. L’équation aux dimensions s’écrit
donc comme

I, = [RIEP (o) T2,
[_] =1 MbL2bT—2b MCL—3C Td

ce qui donne le systeme d’équations suivant

b+c=0
a+2b-3c=0
d-2b=0.

Ce systeme comporte trois équations et quatre inconnues, on peut
donc en déterminer trois avec une variable libre. Etant donné que
I’on veut trouver une relation pour R nous allons choisir a = 1. On
retrouve un systéme de trois équations a trois inconnues, comme
pour la question précédente. On obtient donc b =—-1/5,c=1/5etd =
~2/5 et TT; = RE"Y5p1/5t72/5 D’aprés le théoréme de Buckingham-—
IT on peut donc écrire la relation

O(I1;) =0,

ce qui veut dire que le nombre adimensionnel I'T est constant puisque
c’est le seul argument d’un fonction constante. On peut donc écrire

RE71/501/5t72/5 —CoR=C XE1/5071/5t2/5

qui est la relation que nous avions trouvé a la question précédente,
avec la précision de la constante C. Dans la question précédente,
nous étions arrivé a la conclusion que R était de 'ordre du produit
des autres variables. Ici, le théoréme de Buckingham-IT nous a per-
mis de prouver que C était bien une constante. L'expérience permet-
tra de déterminer sa valeur.

. On ne peut pas répondre car I’équation fait intervenir le produit
C x E'/5, et on ne peut donc déterminer que ce produit avec I'infor-
mation disponible.



4. Bn prenant t = 0,05, o = 1,25 kg/m?> et R = 180 m, nous obtenons

R> 13
E:t—2:9,4510 ],
ce qui correspond a 22,5 kilotonnes (équivalent TNT). La vraie va-
leur de I’essaie Trinity était de 18,6 kilotonnes , nous sommes dans
le bon ordre de grandeur.

Exercice 6 Dans cet exercice nous considérons un modele réduit de digue
faite de blocs de béton de masse 1 kg. Elle est construite a I’échelle 1/20 par
rapport a la réalité. Cette digue est censée protéger contre la houle jusqu’a
une hauteur de 30 cm dans le modéle réduit, hauteur a partir de laquelle
les blocs de béton sont arrachés. On connait I'expression de la condition
de soulevement des blocs de béton, F,/F, = ¢, on on veut appliquer cette
condition a la digue réelle. Notons avec un indice ,, les variable du modele
réduit et avec un indice , les variables correspondant a la réalité. Nous
avons donc les conditions d’arrachement qui s’écrivent

e

am Far
Mng _ Mg
UZL2, UL
L2 U?
"L UL

m, =m

Etant donné que ’échelle géométrique est e = 1/20, nous avons que L2/L2, =
1/¢2. Egalisons maintenant les nombres de Froude, cela donne

U U U,
Fr,=Fr, > —-= L = "= [ "
mT T VeH,,  NgH, U, H,

Or comme le rapport H,/H,, doit respecter I’échelle géométrique (simi-
litude géométrique), nous avons donc que U?/UZ = 1/e et donc finale-
ment

T
3
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M, =My— —5 =
Ly, U €



Exercice 7 Dans cet exercice nous nous intéressons a la chute de pression
(ou gradient de pression) dP/dx le long d’une conduite circulaire. Le but
étant de déterminer le nombre d’expériences nécessaires pour déterminer
cette chute de pression.

1. Les différentes variables qui controlent cet écoulement sont la masse
volumique p de l’eau exprimée en ML=3, la viscosité dynamique y
de I'eau exprimée en ML™!T~!, le rayon R de la conduite exprimé en
L, la vitesse U de ’écoulement exprimé en LT ! et la chute de pres-
sion par unité de longueur dP/dx de l'eau exprimée en ML 2T 2
dans un systeme d’unités MLT. On pourrait imaginer de faire une
expérience ou l'on fait varier le débit a travers une conduite (ce qui
équivaut a faire varier la vitesse) et ou I’'on mesure la chute de pres-
sion correspondant a cette variation de vitesse.

2. Etant donné que l'on a cinq variables pour trois dimensions, il y a
donc 5-3 = 2 nombres adimensionnels qui caractérisent cet écoule-
ment. Ils s’écrivent donc de la forme

I1; = oy’ RV(dP/dx)* i=1,2.
On peut donc écrire I’équation aux dimensions suivante
(-] = ML) ML TP LT ML T2,
[_] — Ma+b+eL—3a—b+c+d—2eT—b—d—Ze.

De cette équation aux dimensions on tire les systeme d’équations
linéaires suivant

a+b+e=0
-3a-b+c+d-2e=0
-b—-d-2e=0.

Il y a cinq variables pour trois équations, on peut donc choisir li-
brement deux parametres parmi les cinq (a, b, ¢, d ou ¢). Néanmoins
comme on cherche avant toute chose le gradient de pression en fonc-
tion des autres parametre posons e = 1 et b = 0 (ce dernier choix est
arbitraire on décide de s’affranchir la viscosité dans ce nombre adi-
mensionnel).

La résolution du systéme d’équations donne donca = -1, c =1 et
d = -2. Le nombre adimensionnel correspondant est

_dP R

' dx pU?
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Dans un deuxieme temps on fixe b = 1 et e = 0. La résolution du
systeme d’équations donne donca =-1,c=-1etd =-1. Le nombre
adimensionnel correspondant est

1
M=t =_—.
oUR ~ Re

On peut sans perte de généralité décider que I1, = Re et non I, =
1/Re.

Le théoreme de Buckingham-IT affirme que la loi recherchée est
sous la forme
qD(Re,l_[l) = 0,

ce qui veut que par le théoreme des fonctions implicites on peut
écrire

IT) = f(Re).

On peut donc maintenant envisager une seule expérience ou l'on
ferait varier le nombre de Reynolds et ou I’'on mesurerai la chute de
pression par unité de longueur correspondante.

. La combinaison du théoréme de Buckingham-IT et du théoreme des
fonctions implicites nous a permis d’affirmer que (dP/dx)R/(pU?) =
f(Re). Or c’est exactement la signification du diagramme de Moody,
sil’on remarque que le coefficient de frottement de Darcy-Weissbach
f est équivalent a I'Ty a un facteur 4 pres. Ce diagramme est présenté
sur la figure 6.

L’analyse du diagramme de Moody permet de mettre en évidence

une variable cachée, a savoir la rugosité (axe vertical sur la droite

du diagramme). On peut voir que pour une conduite donnée (ayant

sa propre rugosité) et pour un nombre de Reynolds suffisamment

élevé, le coefficient f est constant (la chute de pression est constante).

Donc sil’on se donne pour objectif de déterminer f pour une conduite
de rugosité ¢/D = 0,03 a un nombre de Reynolds Re > 102, on peut

voir sur le diagramme que pour cette rugosité f devient constant

a partir de Re = 1,110*. Il ne nous faudra donc qu’une seule expé-

rience pour déterminer f, soit notre chute de pression.
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Friction Factor

Moody Diagram
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F1GURE 6 — Diagramme de Moody
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